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Three-dimensional thermal convection of viscoelastic fluids
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The influence of inertia and elasticity on the onset and stability of three-dimensional thermal convection is
examined for highly elastic polymeric solutions with constant viscosity. These solutions are known as Boger
fluids, and their rheology is approximated by the Oldroyd-B constitutive equation. The onset and the stability
of steady convective patterns, namely rolls, hexagons and squares, are studied in the post-critical range of the
Rayleigh number by using an amplitude equation approach. The square pattern is found to be unstable. In
contrast to Newtonian fluids, the hexagonal pattern can be stable for a certain range of elasticity.
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I. INTRODUCTION Some of the earlier experiments on the thermal convec-
o ) tion of non-Newtonian fluids were conducted by Liang and
Thermal convection is a common and important phenomacrivos[18]. Their study, however, focused on the effects of
enon in nature, e.g., the dynamic motion of the oceans, thgnear thinning, which were found to enhance regularity in
atmosphere, and the interior of stars and planets. It is alsgg,y pattern. Kolodnef19] reported on and referred to re-
important in numerous industrial processes. It usually occurgani experiments on the elastic behavior of individual, long
in spatially extended systems when a sufficiently steep teMsyrands of DNA in buffer solutions, which seem to indicate
perature gradient is applied across a fluid layer. Intensivgne conyective patterns take the form of spatially localized
experiments on instability caused by heating a very thin layegianging and traveling waves that exhibit small amplitude
(a millimeter or lesof fluid with a free surface were con- 4,4 extremely long oscillation periods. The critical Rayleigh
ducted by Bénardl]. Hexagonal cells were observed when n mper for the onset of overstability is lower than for a
the convection developed. Stimulated by these experimentgewtonian fluid, which is in agreement with linear stability
Rayleigh[2] derived the theoretical requirements for the de-gnajysis of viscoelastic fluids. Although both experiment
velopment of convective motion in a layer of fluid with two 19} ‘and theony[17] indicate that two-dimensional rolls are
free surfaces. He showed that the instability would occukayored at the onset of oscillatory or stationary convection,

when the adverse vertical temperature gradient was larg@e emergence of three-dimensional patterns can be impor-
enough. Later experiments on thermal convection in thickefgnt The prevalence of two-dimensional rolls, similarly to

Iayers(with_ or without a free surfaOereve_aIed the presence Newtonian flow, should be expected only near the onset,
of convective cells of many forms not just hexagonal. Theyhere the velocity gradients and therefore normal stresses
simplest convection pattern observed in laboratory is that of, ;o \weak.
straight, parallel rolls when a horizontal thin fluid layer is  The |inear stability analysis predicts the threshold for the
confined between two thermally well conducting, parallelonset of stationary or oscillatory RB convection. Once the
plates. Such rolls can be found near onset of convectionnsiapility threshold is obtained, the amplitude of the motion,
However, as the temperature gradient increases, the patterfje preferred pattern, the size of convective cells, and
often become progressively more complicated and more inynether the nonlinear RB convection are unique or not can
teresting|3]. _ ) only be found via nonlinear analysis. The objective of the
While the problem of Rayleigh-Bénaf&B) thermal con-  hresent study is to investigate the onset and stability of flow
vection has been extensively investigated for Newtonian flupatterns in viscoelastic RB convection. A weakly nonlinear
ids, relatively little attention has been devoted to the therm pproach, amplitude equation method, is adopted. The solu-
convection of viscoelastic fluids. Flow instability and turbu- ¢jons of temperature, velocity, and stress components are ex-
lence are far less widespread in viscoelastic fluids than inyessed as series expansions in terms of the eigenfunctions of
Newtonian fluids because of the high viscosity of polymericine jinearized problem. These expansions are then substituted
fluids. Greer{4], Vest and ArpacS], and Sokolov and Tan- jntg the nonlinear equations and projected onto the eigen-
ner[6] conducted the linear stability analysis of RB convec-gnctions of the linear adjoint problem. This procedure re-
tion of an upper-convected Maxwell fluid. Nonlinear RB g jts in an infinite set of ordinary differential equations that

convection of non-Newtonian fluids was considered bygre then truncated by considering only a few sets of eigen-
Eltayeb[7], Rosenblat{8], Martinez-Mardones and Pérez- nctions.

Gargia [9], Harder [10], and more recently by Khayat
[11-14, Park and Led¢15], Martinez-Mardone®t al. [16],
and Parmentier, Lebon, and Regni&7]. Il. PROBLEM FORMULATION

Consider an incompressible fluid confined between two
infinite and flat plates af=-D/2 andZ=D/2. Let T, and
*Corresponding author. Electronic address: rkhayat@uwo.ca Ty+ 8T be the temperatures of the upper and lower plates,
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respectively, withT, being the reference temperature afid  cosity, is not expected to be significant. The major influence
being the temperature difference. In the present study, thef temperature for Taylor-Couette flow is of dissipative na-
fluid is assumed to obey the following equation of state:  ture, which is bound to be significant given the relatively
high critical Taylor or Deborah number at the onset of insta-
p(T) = pol1 = ar(T-To)l, @) bility. Thermal convection of polymeric fluids can happen at
wherep andp, are the densities at the temperatufemndT,, ~ felatively low temperature gradient or Rayleigh number.
respectively, andr is the coefficient of volumetric expan- Chewing-gum solutions can boil at room temperature. More
sion. LetD, D?/«, k/D, pox?/D?, be, respectively, typical importantly, while the base state for Taylor-Couette flow is a
|ength' time, Ve|0city and pressure, aﬁd/Dz be the typ|ca| purely azimuthal flow, that for Rayleigh-Bénard convection
stress. Herex is the thermal diffusivity andy is the fluid IS pure heat conduction. Thus the absence of flow in the base
viscosity. If the Boussinesq's approximatif20] is assumed State makes the influence of dissipation, and therefore the
to hold, then the dimensionless equations for the conservdemperature dependence of the rheological parameters, es-
tion of mass, momentum, and energy, read, respectively ~sentially negligible.

V.u=0, 2 Ill. LINEARIZED EIGENVALUE PROBLEM

The instability threshold of the conductive state can be
Au+V .7, found by performing a linear stability analysis. This is done
by imposing infinitesimal perturbationg(x,y,z,t) on the
(3)  basic time-independent solutidg(x,y, 2),

Pri(u,+u-Vu)=—Vp+de +
(Uug+u u) p+ e, Ro+1

6.+u-V 0=A0+Rau e, (@) (.20 =fo(xy,2) + ' (xy.21), (8)

whereV is the gradient operator, ard=V -V is the Laplac- whe_re sup.ervectof:(u-,p,Q,T)T. For RB convectlon,. the
ian operator. A subscript after a comma denotes partial dif@sic solutionfo(x,y,2) is simply zero because the fluid re-
ferentiation.t is the time,u=(u,v,w) is the velocity vector, Mains in pure conductlon state. After subst_ltutmg expression
pis the pressure deviation from the steady state ensithe (&) Into the governing equatiori@)~(S), the linearized gov-
unit vector in direction opposite to gravitg=ga;D¥T  €MiNg equat'lorjs' are obtained by dropping any nonlinear
~TJ/vk is the departure from the steady-state temperaturqt,erms_ of the |nf|r!|te5|mal perturbatlong. The solutions of the
T,=T,~(Z/D-1/2)5T, whereg is the acceleration due to inearized equations are expressed in the form of normal

gravity, andv= 7/ pg is the kinematic viscosity. In this work, modes as the following:

the fluids examined are highly elastic polymeric solutions f'(x,y,2,t) = F(z)ek extye)st 9
with constant viscosityy and a single relaxation tima. B T . )

These solutions are known as Boger fluids, and their rheoivhere F(2)={U(2),P(2),0(2),T(2)}", k is the disturbance
ogy is approximated by the Oldroyd-B constitutive equationave-number vector, ang=sg+is, is the complex eigen-

by substitution of expressio(®) into the linearized equations,
. the resulting eigenvalue problem are written in a compact
Elry+u-V7-(Vu)' -7-7-Vu] form as the following:
=T 1+ IVu+(Vu), 5 SMIF(@e e8] = L[F(z)e" oY% (10)
U

The explicit expressions of linear operatdtsand M are
where a superscript T denotes matrix transposition. There amgiven, respectively, by

four important dimensionless parameters in the problem,
namely the Rayleigh number Ra, the Prandtl number Pr, the Rv A -V e V-
elasticity numbeiE, and the solvent-to-solute viscosity ratio Rv+1
Ro: V. 0O 0O O
5Tgar D3 A ““| Re, 0 A o] A3
14 K .
Ra=Z 9T pr=l =23, Ru=-2. () L
e " o 0 0 -1
In this study, the stress free boundary conditions at the plates Ro+1
are considered, which is given by
Pri; 0 0 O
Pw
w=0=-— =0, atz=-1/2,1/2. (7) 0 00O
97 M = , (12)
0 010
With the exception of density, the fluid parameters are as- 0 00E

sumed to be independent of temperature. In contrast to
Taylor-Couette flow[22], the influence of temperature on wherel stands for the operatdi=V (-)+V(-). Upon elimi-
rheological parameters, namely the relaxation time and visnating the pressure and the stress components, it is directly

066305-2



THREE-DIMENSIONAL THERMAL CONVECTION OF... PHYSICAL REVIEW E 71, 066305(2005

checked that only two quantities, namélz) and\W(z), are * *
relevant and the following set of coupled ordinary differen- 0(2) =2, O,sin(nmz), W(2) = >, W,sin(nmz), (16)
tial equations are obtained: n=1 n=1

where®, andW,, are now constants. For nontrivial solutions,

g2 the following characteristic equation results, namely
— -k?*-s|0(2) +W(2) =0, (13)
dz ( R _prs ! + 1)52
Ro+1l  (K+n’mdE
2
d2 B (SE+ 1)(RU + 1) d2 ( Ru = Pr+1 _ Prk°Ra )
(E KPS ERrRor1 a2 KM Rt MW tdE (e )
Pr k’Ra
(SE+1)(Rv+1) _ —
= —RE‘(z@(Z), (14) + (k2+ n2772)E<1 (k2 + n27T2)3> 0. (17)

SER+Rv+1

It is not difficult to establish, as in the case of a Newtonian

where k=\/(k)2+(k,)? represents the magnitude of the fIU|d_, that the valug of the Raylelgh number for the onset of
wave-numwbe;( vectgk. This system reduces to Eq8.37)— stationary convectioits=0) is equal to(w+k?)?/k? for the

(8.39 in Drazin and Reid's monograpi23] in the case of most dominant mode. The criticedmallest Rayleigh num-
Newtonian fluids, that is in the limit oRv— . Note the ~P€r and the corresponding wave number are equal ® Ra

. . : =277 4 andkgzw/ V2, respectively. The value of the criti-
_dn‘ference in the scaling of th? temperature. The correspondéal Rayleigh number is independent of fluid elasticity or vis-
ing free-free boundary conditions are given by

cosity ratio due to the absence of base flow in RB convec-
tion. This result is in agreement with the experiments of
d®W(z) Liang and Acrivos[18] and the linear stability analysis of
0(2) =W(z2) = g2 0 atz=- 1/2,172. (15  Rosenblatf8]. The onset of oscillatory convection coincides
with the emergence of a pair of imaginary eigenvalues in the
characteristic equatiofl7). Thus it can be deduced that the
The solutions for the temperature and velocity coefficientRayleigh number corresponding to the onset of oscillatory

are expressed in trigonometric functions convection is given by
|
Rv+1 Pr+1
k2+7723<R P +—>[R P +(—+1) R +1}
(I m P\ R P+ e )| R P e e TR
Rd'= : (18)

(Rv Pr+Rv + 1)(Rv + 1)Prk?

from which the critical(smalles} value can only be obtained NL(f) = L(f) + Lo(f). (19
numerically. Due to the mathematical complexity of the os-
cillatory convection in the post-critical range of the Rayleigh
number, R&> Ra@, this study will focus on the stability of

The explicit expressions of operatdrs andL, are given,
respectively, by

i i i R
different stationary convective patterns. VA —v e, V.
Rv+1
L= \& 0O 0 O
IV. AMPLITUDE EQUATIONS c= Reﬁez- 0o A 0|
An amplitude equation approach is used to asses the sta- 1 0 -1
bility of three convection patterns, namely rolls, hexagons, Rv+1
and squares, in the post-critical range,maé. Readers are 0 00 0
referred to Friedmah24], Eckhaug 25], Newell et al.[26],
and Cross and Hohenbefg7] for the general theory. The e 0 000 20
current derivation follows closely that developed by Parmen- A7 (Ra- Rde,- 0 0 Of
tier et al. [17], and is only reviewed. The current amplitude 0 000

equations are, however, obtained more accurately as certain
terms dropped by Parmentiet al.[17] are included here.  NL(f) represents the nonlinear and the time-rate contribu-
Equations(2)—(5) are rewritten compactly as tions, namely
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Priu,+u-Vu)
0
f:+u-Vao
E[ri+u-Vr=(Vu)'-7-7- Vu]

NL(f) = . (21)

The method of solution consists of expandinm terms of
eigenfunctions of the linear problem in the form

f= E EAgl(t)fpl(x V.2, p1=1,2,..,%;
p1=1 gy
g1=£N,...,£2,+1. (22)

The summation oveq; extends on the whole set of allow-
able wave vectork , Which in the case of an infinite hori-

PHYSICAL REVIEW E 71, 066305(2005

Agi:tco(%:pl) = SSiCo(ql,pl)ASi +(r=1)2 Cy(qy,py, pz)Agi
P2

_ E 2 5(k‘Q1qu|(q3)Cz(p1,p2ap3)
P2,P3 02,43 01,0, O3
XAGAG 27)

where r=Ra/Rg is the reduced Rayleigh number, which
will be used as the control parameter instead of Ra. &he
function is defined by

0 k™Pr+kP2+kPs#£0

E(k_plkPkaB) = {1 KP1+ kP2 + kP3=(Q

zontal extent can take all possible directions and moduliThe coefficient<C,, C,, andC, are given by

while the summation ovep; runs over the whole set of
eigenfunctions pertaining to a given wave vedtq. Agi_t)
designates the amplitude of the mode and must sa/a%fy
:AEgl in order thatf be real, a bar over a symbol means
complex conjugate. The eigenfunctiofg%(x,y,z) are solu-
tions of the linearized problems defined by

SgiM (fgi(xtytz)) = LC(fgi(Xtytz))a (23)

whereL is given by Eq(20) while operatoM is expressed
by Eq.(12).

The elgenvaluespl of the linearized problem are ordered
in such a way that Rel )>Re(s; )>->Rels)), where
Re(s) stands for the real part cs‘ Solutlonsfgi(x,y,z) are
sought of the form

foixy.2) = Fil@exdik™ - (ex+ey), (24
where e, andaiv are unit vectors in thex andy directions,
respectively. Fgi(2) ={Ug(2) , P§H(2),0f(2), TEH2)}, and is
determined after substltuuon of expressi@d) back into Eq.
(23).

Colth.Py) = PPAURL(2), UPi(2) + (BRX(2), 0.1(2)

+E(TR), T, (29)
C1(d1,p1,P2) = R6€<®p2(2 Wpl(z» (29
P1,P2,Ps =171 1P3(7) . P2 Py
C (ql,qz,q3> Pr (Uqg(z) v qu(z),Uql (2)
+(UR@ - VO22,0,12)
+EUR@ - VTR@,TS42)
~E(VUR) TR, T342)
~E(TE(2 - VUR@,TS42). (30

Itis, of course, highly desirable to reduce the infinite number
of nonlinear coupled ordinary differential equations to a fi-
nite set of equations. This will be achieved by separating the
set of eigenmodeﬁg1 X,Y,2) in two subsetK andKg. The

The next step of the procedure consists of projecting theubsetK¢ contains the critical eigenmodes with a zero

nonlinear equatiori19) on the e|genfunct|onfsqzz(x y,2) of

the linear adjointproblem, which is formulated in Appendix
A. This leads to

(NL(.£22(x,y,2) = (Le(0) £220x,y,2) + (La(F) 1220y, 2).
(25

growth rate[Re(spl) 0]. The critical eigenmodes are the
ones correspondlng to=1 and|kq |=k2, with k2 being the
critical wave number at the onset of stationary convection.
Since the stability of hexagonal, square, and roll cells is stud-
ied, it is sufficient to consider 12 wave-number vectors
k,l| (ql— +1,+2,...,+6) distributed on a circumference of ra-
dluskC and maklng an angle of 30° between each otkee

Here a bracket denotes the average integral of the scal&ig. 6 in Parmentieet al.[17]). It follows that the 12 critical

product defined by

1
(a,b) = L"anﬁ fv P,(a,b)dxdydz (26)

whereP, is scalar product defined on the volumeEquation
(25 stands for an infinite number of ordinary differential
equations for the unknown amplitudétgi(t). After integra-
tion by parts and using relatidi23), the infinite sequence of
amplitude equations are obtained as the following:

eigenmodes aré (x Y,2), ;=%1,+2,...,+6. The subset

Ks consists of aII stable eigenmodes characterized by a nega-
tive growth rate[Re(sgi) <0]. In a weakly nonlinear regime,
these stable eigenmodes are rapidly relaxing from which it
follows that the amplitudes in Eq27) corresponding to
these stable modes can be notably simplified. It is justified to
drop in Eq.(27) the term containing the time derivative be-
cause these modes are quickly damped. Thus the following
relation between the stable and the critical modes is ob-
tained:
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A== (r = 1)Cy(ap, 1, DAY,

1 > S(kuk%k%)C,

. ( p,1,1
Sgico(%, pl) 02,03

01,92:03

whereq,, g;=1,+2,...

AL Cold1, 1) = (r - 12 Cy(ay, 1,p2) A
P2

_ 2 2 5(k‘Q1kQ2kQ3)CZ( 1.p2:P3 )Apz P3

P2:P3 42,03 01,492,903

whereq;=%1,%2,...,

|,

(31)

, £6. Note that the first term on the
right-hand side is not accounted for in the formulation of
Parmentieret al. [17]. It follows from the above consider-
ation that the infinite number of ordinary differential equa-
tions (27) reduce to a finite number of equations, namely

Gz 43’

(32

+6. The number of modep,, ps is

PHYSICAL REVIEW E 71, 066305(2005

the superscripts have been omitted since all of them are equal
to 1.

V. ROLL, HEXAGON, AND SQUARE CONVECTIVE
PATTERNS

For a small value oE or a large value oRv, one expects
the behavior of the flow to be similar to the Newtonian re-
gime, at least around the purely conductive state. Similarly to
the case of a Newtonian fluid, one of the steady-state solu-
tion branches corresponds to pure heat conduction. As Ra
exceeds a critical value, the conduction state loses its stabil-
ity to steady convection. In contrast to Newtonian fluids,
which admit only rolls in the post-critical range, viscoelastic
convection can be in the form of rolls or hexagons depending
on the level of elasticitysee below.

Parmentieret al. [17] carried out a weakly nonlinear sta-
bility analysis of Bénard-Marangoni convection of viscoelas-
tic fluids using an amplitude-equation method. Three cell
patterns consisting of rolls, hexagons, and squares have been
examined for stationary convection; oscillatory convection

increased until a relative accuracy is reached. After substituyas not considered. The roll pattern was predicted to be

tion of Eq. (31) into Eg. (32) and omitting terms of order
higher than 3J(this is justified as one remains in the weakly
nonlinear regimg the following amplitude equations are ob-

tained:
dA
= (1~ DA bl + Ay — A2y
— d(|Ad® +|As)A — elA?A,
d
7'od_AtQ = (r = DA = b(IAL* + [AgP)As = clA[PA,
= d(|A4? + [Ag]) Az — elAs|?A,,
d
Tod_Ate = (r = DAg = b(IA* + [As) Ag - clAs]*A,
— d(A2 + A Ag - e|Ag?A,
d
7'0d_'6t‘4 = (r = DA, — bl Ag]” + |Ag]) Ay = c|A A
= d(|A” + [AgP) Ay - elA A,
dAs
oG T (r = DAs — b(|Ay* + [Ag]*) As — c|Ag]As
— d(|A? + [AgP)As - e|A A,
dAs
o = (= DA = BIAL + | Agf)As = clAdAg

= d(|A? + |A]D) A - €Az %As.

Here, 7y is the relaxation timeb, c, d, ande are complex
coefficients that depend generally on Ry, E, andr, and
are given explicitly in Appendix B. Equation83)—(38) are
usually referred to as the Landau equatip23]. Note that

(33

(34)

(35

(36)

(37)

(38)

stable for only small elasticity numbgE<0.0035 near
criticality, and the three-dimensional hexagonal pattern was
found to be stable foE [0.0035,0.07, for a fluid with
Pr=1000 andRv = 0.01. The square pattern was found to be
always unstabléat least near criticality It is observed that,
according to the current linear stability analysis, the lifit
=0.07 corresponds to the critical elasticity number for the
emergence of oscillatory thermal convection.

In this section, the amplitude equations are used to exam-
ine parameter ranges for three-dimensional stationary con-
vection that have not been covered by Parmemtiex. [17].

The stability of the steady rolls, hexagons, and squares is
determined through linear stability analysis of the steady-
state solutions of EqY33)—(38) pertaining to each pattern.
The current calculations are based on the free-free boundary
conditions only, and indicate that the viscosity ratio has a
strong influence on the stable ranges of stationary roll and
hexagonal patterns. The square pattern is found to be always
unstable. The stability picture is best illustrated in theE)
plane. Alternatively, the stability picture could be examined
in the (r,De) plane, where De is the Deborah number. How-
ever, additional calculationgot included hereshow that

the De varies linearly witle, and, therefore no new qualita-
tively different insight would be gained. Figure 1 shows typi-
cally the regions of existence of roll and hexagonal patterns
for a fluid with Rv=3.75 and Pr=1000. In the figurkl, and

R denote stable hexagonal and roll regions, respectively. In
contrast to the prediction of Parmentigral.[17], there is no
region where both hexagon and roll patterns coexist, as a
result of the use of different boundary conditions here. De-
spite this discrepancy, qualitative agreement is obtained re-
garding the stable ranges of hexagonal and roll patterns. For
relatively smallE, the conductive stat€ is lost to two-
dimensional stationary convectiofmolls) when r exceeds
unity. When the level of elasticity exceeds a critical value
EM, but remains smaller thal" (elasticity level correspond-
ing to the onset of oscillatory convectipronly the hexago-
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2.0+ 0.5
1.8+ 0'4_: Pr -
] 1 4 e
1.6 1 ---- 2 L
1 034 -———— 3 PR
] 1 ———5 L
= 1.4+ T 1 10 B
i O/H e e 4,/‘
] R 0.2 L
1-Zf ] /;7;'//,4.
: 0 1 1 - 55‘”///
1.0 -] =
7 _Z
¢ -f.;.;?/
0.8 4+————"— 1
0 o' 072 0'3 0'4 05 0 i 2 3 )| 5
E Rv

FIG. 1. Stability picture obtained with amplitude equation  FIG. 3. Influence oRv on the critical elasticity numbeE" for
method for two convection patterns, namely roll and hexagon. Thiglifferent value of Pr. The curve show the linear dependendg™of
figure shows the stable range of roll and hexagonal patterns oan Rv whenRv >0.5.

(r,E) plane for a fluid with Pr=1000 anBv=3.75.H andR rep-

resent stable regions for hexagonal and roll patterns, respectively, appears to be preferred unleBsis relatively large. Thus
the stable heat conduction state, @hdhe oscillatory convection.  rarefied gasesPr<1 andRv=0) would exhibit a predomi-

EH represents the critical elasticity number for the emergence Ohantly roll pattern. For larger Pr valueB" remains essen-
three-dimensional convective pattethexagon, while E" is the  tially constant. The curves become flattened, which indicates
elasticity level corresponding to the onset of oscillatory convections, ot for typical polymeric solutionéPrs>1), the influence of

r on the stationary convective patterns is not significant.

. . P
nal patteLn IS ;table at the onset of stationary convectionpy, ¢ i s the viscosity ratio of the polymeric solution that
BeyondE", oscillatory convection sets in. Thus inertia tends oo mines the likelihood for two- or three-dimensional con-

to enhance the onset of convective rolls. It is found fat vection. Note thaE" tends to infinity, for any Pr, in the limit

increases linearly withr, which seems to be the case for of a Newtonian fluid(Ry— ). This can be seen more
other values oRy a”,? Pr. 'I_'he figure al_so indicates tlﬁﬁ. clearly from Fig. 3, which shows the increaseff with Ru
can be larger thart at higher Raylelgh. number, wh|ch for several values of Pr. The increase is slow winis
means that both stationary roll and oscillatory convectlor}el(,mvely small. For larg®v, the figure indicates tha" is

become possible. This region is indicated BYR in the ; : . . .
figure. ForE>E", the conductive state loses its stability at simply proportion toRv, and this behavior may be given by

r<1 as predicted by linear stability analysis. Similarly, there E"=~0.07Rv-0.022 (Pr>1). (39

is a region marked b/H, where both stationary hexagons Thus, similarly to elasticity, viscosity tends to precipitate the

an?_r?eszgatgr%gﬁggzﬂ?n?ﬁ Ff)lcl)JiSjlb:aerémeters is summa- €mergence of three-dimensional convection, as well as the
P b onset of oscillatory behavior. There is thus a synergetic in-

rized in Figs. 2 and 3, wherg" is plotted against Pr angy . . .
atr=1.1, respectively. Figure 2 shows the influence of Pr Onterplay between elastic and viscous effects regarding the loss

0 - . ; of stability of the roll pattern. The stable range of two-
fErorrfwolzigvze I[:(()),rﬂ.mzﬂ/%rd\I/S;IISSELeg:g]peSSsEZ?pE/eIil?(lasg:gged dimensional roll pattern is significantly widened with in-

. : ) . creasingRv, which is of course expected as the contribution
regardless of the viscosity ratio. In this range, the roll patterrbf the Newtonian solvent increases. Recall, that in the New-

tonian limit, only rolls are predicted, regardless of the nature
of boundary conditions usg@8].

Unlike the critical Rayleigh number Raat the onset of
stationary thermal convection, the amplitude of convection is

10"

10° strongly influenced by fluid elasticity, viscosity ratio, and
] Prandtl number. It is convenient to monitor the response of
u the Nusselt number Nu as Ra is increased in the post-critical
range. The Nusselt number is defined in terms of the heat
107 flux Q at the lower plate, averaged over a cell width:
1
Nu=1-—(0,,(xy,z=-1/21))=1
R Xy )
2
L T T | I

1 pm\, .
Pr - POP CO{—) gkaectyey)y (40
Ra 2 Aq0gpm oo 5 ) ), (40)
FIG. 2. Influence of Pr on the critical elasticity numkgt for

different value ofRv. The curves show th&™ decreases monotoni- Where() denotes double integration ovei [0, 27/k] and
cally with Pr. ye[0,27/K].
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FIG. 4. Bifurcation diagrams and influence of elasticity on sta- FIG. 6. Influence of elasticity on stationary thermal convection
tionary thermal convection of roll patterns. The Nusselt number isof hexagonal pattern. The Nusselt number is plotted against the
plotted against the reduced Rayleigh numbésr E €[0,0.2 with  elasticity numbeit for r=2 with Rv=3.75 and Pr=7.

Rv=3.75 and Pr=7.
=3.75, and Pr=7. The drop in Nu between two succeskive

The influence of fluid elasticity on the steady bifurcation values becomes larger asincreasing, which indicates that
picture of roll pattern is depicted in Fig. 4, where Nu is elasticity affects much the steady-state thermal convection
plotted against for E<[0,0.2, Rv=3.75, and Pr=7E is for the higher Ra_yl_eigh number range. FRU:3.75_, e_Iastic-
chosen relatively small to insure that the exchange of stabillly tends to prohibit heat transport. However, this is not al-
ity between conductive state and stationary roll pattern igvays the case. The heat transport is actually enhanced with
valid. The figure indicates that fluid elasticity tends to pro-increasing elasticity as depicted in Fig. 6, which is the plot of
hibit heat transport, relatively to a Newtonian fluid. The bi- NU againste for Rv €[2,6], r=2, and Pr=10.
furcation is supercritical, reflecting a gradual increase in Nu The influence of viscosity ratio on Nusselt number for
asr exceeds slightly 1. Near the critical point, the influencesteady roll pattern is shown in Fig. 7, which parallels the
of E is gradual, with Nu decreasing almost linearly &s influence of elasticity asv decreases. Recall that as the
increases. At higher values, the drop in Nu between two (Newtoniar) solvent viscosity decreases, the effective elas-
successiveE values is largest ned=0. Thus elasticity ap- ticity of the fluid becomes more significant. Indeed, the fig-
pears to affect little the steady-state thermal convection foHre indicates that Nu decreases with decreastngfor a
the h|gher Ray|e|gh number range. Physica”y, one expectgivenl'. Figures 4,5, and 7 seem to suggest that there is little
the dependence of Nu oB to be continuous as the flow influence of fluid elasticity or relaxation on the amplitude of
deviates from the Newtonian limit. At higher elasticity level, Steady convection whemis close to 1. This observation is in
the conductive state loses its stability to stationary hexagona@greement with the measurements of Liang and Acrfit8%
convective pattern as exceeds 1. The steady bifurcation It is important to observe that the physical significance of the
picture of hexagonal pattern is also supercritical as depicteBranch curves in Figs. 4, 5, and 7 become clear only when
in Fig. 5, the plot of Nu against for Ec[0.2,0.4, Ry  the stability of these branches is known. It is found that

Prandtl number has less influence on the amplitude of both

)
<

18 —
] E Rv L T
1864 —— gz - . : - //////,,
1 --——-—-- - — s -
_________ 0.3 -7 164 ———— 10 e
_____ 0.4 -7 e 20 S
1.6+ N o - T | ///////
=S ] - el ;S
z A 3 1.4 At
(A z 1. //}//,
1.4 [ 0
ARl P /{/’//,/
4 //, - ////// 12 ///////
- o 24 17
1 .2—_ //{/ - o "//I///
- 1/
e /I/’
/o
1 ! ! ! 1 ! T ! 1 T T T 1 T T ! 1 ! T ! 1 T T T T T T T T T T T T T T T T T
1.2 1.4 1.6 1.8 1.25 15 1.75 2
r r

FIG. 5. Bifurcation diagrams and influence of viscosity ratio on  FIG. 7. Bifurcation diagrams and influence of viscosity ratio on
stationary thermal convection of hexagonal patterns. The Nussefitationary thermal convection of roll patterns. The Nusselt number
number is plotted against the reduced Rayleigh nuntbéar E is plotted against the reduced Rayleigh numbdor Rv € [5,%]
€[0.2,0.4 with Rv=3.75 and Pr=7. with E=0.1 and Pr=7.
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] o (Le(f) =sM(f), ')y = (F,Le(F) = sM'(F), (A1)
] 1 ] wheres” and the supervectdi =(u",p",6",7)" represent,
164 "7~ :go _ = respectively, the eigenvalue and eigenfunctions in the adjoint
1 ————- 1000 ////// linear problem.L; and M" are the adjoint operators af.
e andM defined in Eqs(18) and(23). Noting that
3 P
1.4 = * * * * *  x
z g (sM(f),f) = (Prisu,u’) +(s6,8) + (Esr, ) = (u,Prisu’)
] T +(0,S 0 +(rEST)=(,SM(F),  (A2)
1.2 s 2] ..
1 // then it is readily found thaM” is given by
/ e P’ 00 0
! 1.2 14 16 1.8 M* = 0O 00O A3
r “lo o010 (A3)
FIG. 8. Bifurcation diagrams and influence of Pr on stationary 0O 0O0E

thermal convection of hexagonal patterns. The Nusselt number is .

plotted against the reduced Rayleigh numbdor Pre[1,1009  Similarly, noting that
with Rv=3.75 andE=0.3. The inset shows the asymptotic behavior * * * *
of Nu against Pr yme ((Au),U") = (U, (Au")) +(V,(U" - Vu)=(V,(u- Vu'))

= (U, (Au")) + (U, U, (A4)
roll and hexagonal convective patterns. For fixed elasticity
number and viscosity ratio, the Nusselt number keeps essen- (- Vp,u)=(p,V -u)-(pu)s, (A5)
tially the same as Pr varies from 1 to 1000, as shown in Fig.
8, which is the plot of Nu for the steady hexagonal pattern (e, u"y=(O,U" -e) (AB)
againstr for E=0.3 andRv=3.75. The inset clearly shows an ’ ' ’
asymptotic behavior. (VU= (7. VU + <ez:1_,u*>|(1), (A7)
VI. CONCLUSION (V-u,p)=-(u,vp), (A8)
The finite-amplitude thermal convection for a thin layer of (Rau-e, 6) = (u,Raf &) (A9)

a viscoelastic fluid of the Oldroyd-B type is examined in this
study. An amplitude equation approach is used to study the
stability of stationary convective patterns, namely rolls, (A6, 6)=(0,A6) + 96 6
hexagons, and squares, in the post-critical range of the Ray- ’ ' 9z’
leigh number. Six Landau type amplitude equations are de-

rived by following a generalized method proposed by Par- (-77)=—(7,7), (A11)
mentieret al. [17]. Square patterns are found to be unstable

for any parameter range. Steady hexagonal patterns are pre- ..+ _ * AT * |1 * |1
dicted to be stable for certain range of elasticity number, (@r7)=(uaVs +(V7) ]>+<UX’TXZ>|°+<UV’TVZ>|O’
which is in contrast to the Newtonian case, where only rolls (A12)
are predicted to be stable. The influence of the Prandtl numy,a 1% is aiven b

ber and the viscosity ratio on the stability of rolls and hexa- clsd y

1

: (A10)
0

gons are examined. It is found that the viscosity ratio plays a A -V Ra@eZ —-al
more important role in determining the likelihood of the two- vV 0 0 0
or three-dimensional patterns for typical polymeric solutions. LE = 0 A . (A13)
e,
0 O 0 -1
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APPENDIX B: EXPRESSIONS OF 7, b, ¢, d, AND e
APPENDIX A: THE LINEAR ADJOINT PROBLEM
The coefficientsyy, b, ¢, d, ande in amplitude equations
In this appendix, the derivation of the linear adjoint prob- (33)(38) are given explicitly as follows:
lem is briefly outlined. Readers are referred to Friedfizah
and Eckhau$25] for the general theory. The linear adjoint ;o= Co(2,1) (B1)
problem is defined by 7 cyi2,1,0)°
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