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The influence of inertia and elasticity on the onset and stability of three-dimensional thermal convection is
examined for highly elastic polymeric solutions with constant viscosity. These solutions are known as Boger
fluids, and their rheology is approximated by the Oldroyd-B constitutive equation. The onset and the stability
of steady convective patterns, namely rolls, hexagons and squares, are studied in the post-critical range of the
Rayleigh number by using an amplitude equation approach. The square pattern is found to be unstable. In
contrast to Newtonian fluids, the hexagonal pattern can be stable for a certain range of elasticity.
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I. INTRODUCTION

Thermal convection is a common and important phenom-
enon in nature, e.g., the dynamic motion of the oceans, the
atmosphere, and the interior of stars and planets. It is also
important in numerous industrial processes. It usually occurs
in spatially extended systems when a sufficiently steep tem-
perature gradient is applied across a fluid layer. Intensive
experiments on instability caused by heating a very thin layer
sa millimeter or lessd of fluid with a free surface were con-
ducted by Bénardf1g. Hexagonal cells were observed when
the convection developed. Stimulated by these experiments,
Rayleighf2g derived the theoretical requirements for the de-
velopment of convective motion in a layer of fluid with two
free surfaces. He showed that the instability would occur
when the adverse vertical temperature gradient was large
enough. Later experiments on thermal convection in thicker
layersswith or without a free surfaced revealed the presence
of convective cells of many forms not just hexagonal. The
simplest convection pattern observed in laboratory is that of
straight, parallel rolls when a horizontal thin fluid layer is
confined between two thermally well conducting, parallel
plates. Such rolls can be found near onset of convection.
However, as the temperature gradient increases, the patterns
often become progressively more complicated and more in-
terestingf3g.

While the problem of Rayleigh-BénardsRBd thermal con-
vection has been extensively investigated for Newtonian flu-
ids, relatively little attention has been devoted to the thermal
convection of viscoelastic fluids. Flow instability and turbu-
lence are far less widespread in viscoelastic fluids than in
Newtonian fluids because of the high viscosity of polymeric
fluids. Greenf4g, Vest and Arpacif5g, and Sokolov and Tan-
ner f6g conducted the linear stability analysis of RB convec-
tion of an upper-convected Maxwell fluid. Nonlinear RB
convection of non-Newtonian fluids was considered by
Eltayeb f7g, Rosenblattf8g, Martinez-Mardones and Pérez-
Garçia f9g, Harder f10g, and more recently by Khayat
f11–14g, Park and Leef15g, Martinez-Mardoneset al. f16g,
and Parmentier, Lebon, and Regnierf17g.

Some of the earlier experiments on the thermal convec-
tion of non-Newtonian fluids were conducted by Liang and
Acrivos f18g. Their study, however, focused on the effects of
shear thinning, which were found to enhance regularity in
flow pattern. Kolodnerf19g reported on and referred to re-
cent experiments on the elastic behavior of individual, long
strands of DNA in buffer solutions, which seem to indicate
the convective patterns take the form of spatially localized
standing and traveling waves that exhibit small amplitude
and extremely long oscillation periods. The critical Rayleigh
number for the onset of overstability is lower than for a
Newtonian fluid, which is in agreement with linear stability
analysis of viscoelastic fluids. Although both experiment
f19g and theoryf17g indicate that two-dimensional rolls are
favored at the onset of oscillatory or stationary convection,
the emergence of three-dimensional patterns can be impor-
tant. The prevalence of two-dimensional rolls, similarly to
Newtonian flow, should be expected only near the onset,
where the velocity gradients and therefore normal stresses
are weak.

The linear stability analysis predicts the threshold for the
onset of stationary or oscillatory RB convection. Once the
instability threshold is obtained, the amplitude of the motion,
the preferred pattern, the size of convective cells, and
whether the nonlinear RB convection are unique or not can
only be found via nonlinear analysis. The objective of the
present study is to investigate the onset and stability of flow
patterns in viscoelastic RB convection. A weakly nonlinear
approach, amplitude equation method, is adopted. The solu-
tions of temperature, velocity, and stress components are ex-
pressed as series expansions in terms of the eigenfunctions of
the linearized problem. These expansions are then substituted
into the nonlinear equations and projected onto the eigen-
functions of the linear adjoint problem. This procedure re-
sults in an infinite set of ordinary differential equations that
are then truncated by considering only a few sets of eigen-
functions.

II. PROBLEM FORMULATION

Consider an incompressible fluid confined between two
infinite and flat plates atZ=−D /2 andZ=D /2. Let T0 and
T0+dT be the temperatures of the upper and lower plates,*Corresponding author. Electronic address: rkhayat@uwo.ca
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respectively, withT0 being the reference temperature anddT
being the temperature difference. In the present study, the
fluid is assumed to obey the following equation of state:

rsTd = r0f1 − aTsT − T0dg, s1d

wherer andr0 are the densities at the temperaturesT andT0,
respectively, andaT is the coefficient of volumetric expan-
sion. Let D , D2/k , k /D , r0k2/D2, be, respectively, typical
length, time, velocity and pressure, andhk /D2 be the typical
stress. Herek is the thermal diffusivity andh is the fluid
viscosity. If the Boussinesq’s approximationf20g is assumed
to hold, then the dimensionless equations for the conserva-
tion of mass, momentum, and energy, read, respectively

= ·u = 0, s2d

Pr−1su,t + u · = ud = − = p + uez +
Rv

Rv + 1
Du + = · t,

s3d

u,t + u · = u = Du + Rau ·ez, s4d

where= is the gradient operator, andD= = ·= is the Laplac-
ian operator. A subscript after a comma denotes partial dif-
ferentiation.t is the time,u=su,v ,wd is the velocity vector,
p is the pressure deviation from the steady state, andez is the
unit vector in direction opposite to gravity.u=gaTD3sT
−Tsd /nk is the departure from the steady-state temperature,
Ts=T0−sZ/D−1/2ddT, where g is the acceleration due to
gravity, andn=h /r0 is the kinematic viscosity. In this work,
the fluids examined are highly elastic polymeric solutions
with constant viscosityh and a single relaxation timel.
These solutions are known as Boger fluids, and their rheol-
ogy is approximated by the Oldroyd-B constitutive equation
f21g. The elastic part of the deviatoric stress tensort is given
by

Eft,t + u · = t − s=udT · t − t · = ug

= − t +
1

Rv + 1
f=u + s=udTg, s5d

where a superscript T denotes matrix transposition. There are
four important dimensionless parameters in the problem,
namely the Rayleigh number Ra, the Prandtl number Pr, the
elasticity numberE, and the solvent-to-solute viscosity ratio
Rv:

Ra =
dTgaTD3

nk
, Pr =

n

k
, E =

lk

D2, Rv =
hs

hp
. s6d

In this study, the stress free boundary conditions at the plates
are considered, which is given by

w = u =
]2w

]z2 = 0, atz= − 1/2,1/2. s7d

With the exception of density, the fluid parameters are as-
sumed to be independent of temperature. In contrast to
Taylor-Couette flowf22g, the influence of temperature on
rheological parameters, namely the relaxation time and vis-

cosity, is not expected to be significant. The major influence
of temperature for Taylor-Couette flow is of dissipative na-
ture, which is bound to be significant given the relatively
high critical Taylor or Deborah number at the onset of insta-
bility. Thermal convection of polymeric fluids can happen at
relatively low temperature gradient or Rayleigh number.
Chewing-gum solutions can boil at room temperature. More
importantly, while the base state for Taylor-Couette flow is a
purely azimuthal flow, that for Rayleigh-Bénard convection
is pure heat conduction. Thus the absence of flow in the base
state makes the influence of dissipation, and therefore the
temperature dependence of the rheological parameters, es-
sentially negligible.

III. LINEARIZED EIGENVALUE PROBLEM

The instability threshold of the conductive state can be
found by performing a linear stability analysis. This is done
by imposing infinitesimal perturbationsf8sx,y,z,td on the
basic time-independent solutionf0sx,y,zd,

fsx,y,z,td = f0sx,y,zd + f8sx,y,z,td, s8d

where supervectorf =su ,p,u ,tdT. For RB convection, the
basic solutionf0sx,y,zd is simply zero because the fluid re-
mains in pure conduction state. After substituting expression
s8d into the governing equationss2d–s5d, the linearized gov-
erning equations are obtained by dropping any nonlinear
terms of the infinitesimal perturbations. The solutions of the
linearized equations are expressed in the form of normal
modes as the following:

f8sx,y,z,td = Fszdeik·sxex+yeyd+st, s9d

where Fszd=hUszd ,Pszd ,Qszd ,TszdjT, k is the disturbance
wave-number vector, ands=sR+isI is the complex eigen-
value dictating the time evolution of the disturbances. After
substitution of expressions9d into the linearized equations,
the resulting eigenvalue problem are written in a compact
form as the following:

sMfFszdeik·sxex+yeydg = LfFszdeik·sxex+yeydg. s10d

The explicit expressions of linear operatorsL and M are
given, respectively, by

L =*
Rv

Rv + 1
D − = ez = ·

= · 0 0 0

Raez· 0 D 0

1

Rv + 1
G 0 0 − 1

* , s11d

M = *
Pr−1I 3 0 0 0

0 0 0 0

0 0 1 0

0 0 0 E
* , s12d

whereG stands for the operatorG= = s·d+=Ts·d. Upon elimi-
nating the pressure and the stress components, it is directly
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checked that only two quantities, namelyQszd andWszd, are
relevant and the following set of coupled ordinary differen-
tial equations are obtained:

S d2

dz2 − k2 − sDQszd + Wszd = 0, s13d

S d2

dz2 − k2 − Pr−1s
ssE+ 1dsRv + 1d
sERv + Rv + 1

DS d2

dz2 − k2DWszd

=
ssE+ 1dsRv + 1d
sERv + Rv + 1

Rak2Qszd, s14d

where k=Îskxd2+skyd2 represents the magnitude of the
wave-number vectork. This system reduces to Eqs.s8.37d–
s8.39d in Drazin and Reid’s monographf23g in the case of
Newtonian fluids, that is in the limit ofRv→`. Note the
difference in the scaling of the temperature. The correspond-
ing free-free boundary conditions are given by

Qszd = Wszd =
d2Wszd

dz2 = 0 atz= − 1/2,1/2. s15d

The solutions for the temperature and velocity coefficients
are expressed in trigonometric functions

Qszd = o
n=1

`

Qnsinsnpzd, Wszd = o
n=1

`

Wnsinsnpzd, s16d

whereQn andWn are now constants. For nontrivial solutions,
the following characteristic equation results, namely

s3 + S Rv
Rv + 1

Pr +
1

sk2 + n2p2dE
+ 1Ds2

+ S Rv
Rv + 1

Pr +
Pr + 1

sk2 + n2p2dE
−

Prk2Ra

sk2 + n2p2d3Ds

+
Pr

sk2 + n2p2dES1 −
k2Ra

sk2 + n2p2d3D = 0. s17d

It is not difficult to establish, as in the case of a Newtonian
fluid, that the value of the Rayleigh number for the onset of
stationary convectionss=0d is equal tosp2+k2d3/k2 for the
most dominant mode. The criticalssmallestd Rayleigh num-
ber and the corresponding wave number are equal to RaC

S

=27p4/4 andkC
S=p /Î2, respectively. The value of the criti-

cal Rayleigh number is independent of fluid elasticity or vis-
cosity ratio due to the absence of base flow in RB convec-
tion. This result is in agreement with the experiments of
Liang and Acrivosf18g and the linear stability analysis of
Rosenblattf8g. The onset of oscillatory convection coincides
with the emergence of a pair of imaginary eigenvalues in the
characteristic equations17d. Thus it can be deduced that the
Rayleigh number corresponding to the onset of oscillatory
convection is given by

Rah =

sk2 + p2d3SRv Pr +
Rv + 1

sk2 + p2dEDFRv Pr +S Pr + 1

sk2 + p2dE
+ 1DsRv + 1dG

sRv Pr +Rv + 1dsRv + 1dPrk2 , s18d

from which the criticalssmallestd value can only be obtained
numerically. Due to the mathematical complexity of the os-
cillatory convection in the post-critical range of the Rayleigh
number, Ra.RaC

S, this study will focus on the stability of
different stationary convective patterns.

IV. AMPLITUDE EQUATIONS

An amplitude equation approach is used to asses the sta-
bility of three convection patterns, namely rolls, hexagons,
and squares, in the post-critical range, Ra.RaC

S. Readers are
referred to Friedmanf24g, Eckhausf25g, Newell et al. f26g,
and Cross and Hohenbergf27g for the general theory. The
current derivation follows closely that developed by Parmen-
tier et al. f17g, and is only reviewed. The current amplitude
equations are, however, obtained more accurately as certain
terms dropped by Parmentieret al. f17g are included here.

Equationss2d–s5d are rewritten compactly as

NLsfd = LCsfd + LDsfd. s19d

The explicit expressions of operatorsLC and LD are given,
respectively, by

LC =*
Rv

Rv + 1
D − = ez = ·

= · 0 0 0

Rac
sez· 0 D 0

1

Rv + 1
G 0 0 − 1

*,

LD = *
0 0 0 0

0 0 0 0

sRa − Rac
sdez· 0 0 0

0 0 0 0
* . s20d

NLsfd represents the nonlinear and the time-rate contribu-
tions, namely
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NLsfd = *
Pr−1su,t + u · = ud

0

u,t + u · = u

Eft,t + u · = t − s=udT · t − t · = ug
* . s21d

The method of solution consists of expandingf in terms of
eigenfunctions of the linear problem in the form

f = o
p1=1

`

o
q1

Aq1

p1stdfq1

p1sx,y,zd, p1 = 1,2,…,`;

q1 = ± N,…, ± 2, ± 1. s22d

The summation overq1 extends on the whole set of allow-
able wave vectorskq1

, which in the case of an infinite hori-
zontal extent can take all possible directions and moduli,
while the summation overp1 runs over the whole set of
eigenfunctions pertaining to a given wave vectorkq1

. Aq1

p1std
designates the amplitude of the mode and must satisfyĀq1

p1

=A−q1

p̄1 in order thatf be real, a bar over a symbol means
complex conjugate. The eigenfunctionsfq1

p1sx,y,zd are solu-
tions of the linearized problems defined by

sq1

p1M„fq1

p1sx,y,zd… = LC„fq1

p1sx,y,zd…, s23d

whereLC is given by Eq.s20d while operatorM is expressed
by Eq. s12d.

The eigenvaluessq1

p1 of the linearized problem are ordered
in such a way that Ressq1

1 d.Ressq1

2 d. ¯ .Ressq1

n d, where
Ressd stands for the real part ofs. Solutionsfq1

p1sx,y,zd are
sought of the form

fq1

p1sx,y,zd = Fq1

p1szdexpbikq1 · sexx + eyydc, s24d

whereex and ey are unit vectors in thex and y directions,
respectively.Fq1

p1szd=hUq1

p1szd ,Pq1

p1szd ,Qq1

p1szd ,Tq1

p1szdjT, and is
determined after substitution of expressions24d back into Eq.
s23d.

The next step of the procedure consists of projecting the
nonlinear equations19d on the eigenfunctionsfq2

*p2sx,y,zd of
the linear adjointproblem, which is formulated in Appendix
A. This leads to

kNLsfd,fq2

*p2sx,y,zdl = kLCsfd,fq2

*p2sx,y,zdl + kLDsfd,fq2

*p2sx,y,zdl.

s25d

Here a bracket denotes the average integral of the scalar
product defined by

ka,bl ; lim
L→`

1

4L2E
v

Pvsa,bddxdydz, s26d

wherePv is scalar product defined on the volumev. Equation
s25d stands for an infinite number of ordinary differential
equations for the unknown amplitudesAq1

p1std. After integra-
tion by parts and using relations23d, the infinite sequence of
amplitude equations are obtained as the following:

Aq1

p1,tC0sq1,p1d = sq1

p1C0sq1,p1dAq1

p1 + sr − 1do
p2

`

C1sq1,p1,p2dAq1

p2

− o
p2,p3

`

o
q2,q3

dsk−q1kq2kq3dC2Sp1,p2,p3

q1,q2,q3
D

3Aq2

p2Aq3

p3, s27d

where r =Ra/RaC
S is the reduced Rayleigh number, which

will be used as the control parameter instead of Ra. Thed
function is defined by

dsk−p1kp2kp3d = H0 k−p1 + kp2 + kp3 Þ 0

1 k−p1 + kp2 + kp3 = 0
J .

The coefficientsC0, C1, andC2 are given by

C0sq1,p1d = Pr−1kUq1

p1szd,Uq1

*p1szdl + kQq1

p1szd,Qq1

*p1szdl

+ EkTq1

p1szd,Tq1

*p1szdl, s28d

C1sq1,p1,p2d = RaC
SkQq1

p2szd,Wq1

*p1szdl, s29d

C2Sp1,p2,p3

q1,q2,q3
D = Pr−1kUq3

p3szd · = Uq2

p2szd,Uq1

*p1szdl

+ kUq3

p3szd · = Qq2

p2szd,Qq1

*p1szdl

+ EkUq3

p3szd · = Tq2

p2szd,Tq1

*p1szdl

− Ek=TUq3

p3szd ·Tq2

p2szd,Tq1

*p1szdl

− EkTq3

p3szd · = Uq2

p2szd,Tq1

*p1szdl. s30d

It is, of course, highly desirable to reduce the infinite number
of nonlinear coupled ordinary differential equations to a fi-
nite set of equations. This will be achieved by separating the
set of eigenmodesfq1

p1sx,y,zd in two subsetsKC andKS. The
subset KC contains the critical eigenmodes with a zero
growth rate fRessq1

p1d=0g. The critical eigenmodes are the
ones corresponding top1=1 andukq1

u=kC
S, with kC

S being the
critical wave number at the onset of stationary convection.
Since the stability of hexagonal, square, and roll cells is stud-
ied, it is sufficient to consider 12 wave-number vectors
kq1

sq1= ±1, ±2,… , ±6d distributed on a circumference of ra-
dius kC

S and making an angle of 30° between each otherssee
Fig. 6 in Parmentieret al. f17gd. It follows that the 12 critical
eigenmodes arefq1

1 sx,y,zd , q1= ±1, ±2,… , ±6. The subset
KS consists of all stable eigenmodes characterized by a nega-
tive growth ratefRessq1

p1d,0g. In a weakly nonlinear regime,
these stable eigenmodes are rapidly relaxing from which it
follows that the amplitudes in Eq.s27d corresponding to
these stable modes can be notably simplified. It is justified to
drop in Eq.s27d the term containing the time derivative be-
cause these modes are quickly damped. Thus the following
relation between the stable and the critical modes is ob-
tained:
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Aq1

p1 = − sr − 1dC1sq2,1,1dAq2

1

+
1

sq1

p1C0sq1,p1d o
q2,q3

dsk−q1kq2kq3dC2S p1,1,1

q1,q2,q3
DAq2

1 Aq3

1 ,

s31d

whereq2, q3= ±1, ±2,… , ±6. Note that the first term on the
right-hand side is not accounted for in the formulation of
Parmentieret al. f17g. It follows from the above consider-
ation that the infinite number of ordinary differential equa-
tions s27d reduce to a finite number of equations, namely

Aq1

p1, tC0sq1,1d = sr − 1do
p2

`

C1sq1,1,p2dAq1

p2

− o
p2,p3

`

o
q2,q3

dsk−q1kq2kq3dC2S 1,p2,p3

q1,q2,q3
DAq2

p2Aq3

p3,

s32d

whereq1= ±1, ±2,… , ±6. The number of modesp2, p3 is
increased until a relative accuracy is reached. After substitu-
tion of Eq. s31d into Eq. s32d and omitting terms of order
higher than 3sthis is justified as one remains in the weakly
nonlinear regimed, the following amplitude equations are ob-
tained:

t0
dA1

dt
= sr − 1dA1 − bsuA2u2 + uA3u2dA1 − cuA1u2A1

− dsuA6u2 + uA5u2dA1 − euA4u2A1, s33d

t0
dA2

dt
= sr − 1dA2 − bsuA1u2 + uA3u2dA2 − cuA2u2A2

− dsuA4u2 + uA6u2dA2 − euA5u2A2, s34d

t0
dA3

dt
= sr − 1dA3 − bsuA1u2 + uA2u2dA3 − cuA3u2A3

− dsuA4u2 + uA5u2dA3 − euA6u2A3, s35d

t0
dA4

dt
= sr − 1dA4 − bsuA5u2 + uA6u2dA4 − cuA4u2A4

− dsuA2u2 + uA3u2dA4 − euA1u2A4, s36d

t0
dA5

dt
= sr − 1dA5 − bsuA4u2 + uA6u2dA5 − cuA5u2A5

− dsuA1u2 + uA3u2dA5 − euA2u2A5, s37d

t0
dA6

dt
= sr − 1dA6 − bsuA4u2 + uA5u2dA6 − cuA6u2A6

− dsuA1u2 + uA2u2dA6 − euA3u2A6. s38d

Here, t0 is the relaxation time,b, c, d, and e are complex
coefficients that depend generally on Pr,Rv, E, and r, and
are given explicitly in Appendix B. Equationss33d–s38d are
usually referred to as the Landau equationsf23g. Note that

the superscripts have been omitted since all of them are equal
to 1.

V. ROLL, HEXAGON, AND SQUARE CONVECTIVE
PATTERNS

For a small value ofE or a large value ofRv, one expects
the behavior of the flow to be similar to the Newtonian re-
gime, at least around the purely conductive state. Similarly to
the case of a Newtonian fluid, one of the steady-state solu-
tion branches corresponds to pure heat conduction. As Ra
exceeds a critical value, the conduction state loses its stabil-
ity to steady convection. In contrast to Newtonian fluids,
which admit only rolls in the post-critical range, viscoelastic
convection can be in the form of rolls or hexagons depending
on the level of elasticityssee belowd.

Parmentieret al. f17g carried out a weakly nonlinear sta-
bility analysis of Bénard-Marangoni convection of viscoelas-
tic fluids using an amplitude-equation method. Three cell
patterns consisting of rolls, hexagons, and squares have been
examined for stationary convection; oscillatory convection
was not considered. The roll pattern was predicted to be
stable for only small elasticity numbersE,0.0035d near
criticality, and the three-dimensional hexagonal pattern was
found to be stable forEP f0.0035,0.07g, for a fluid with
Pr=1000 andRv<0.01. The square pattern was found to be
always unstablesat least near criticalityd. It is observed that,
according to the current linear stability analysis, the limitE
=0.07 corresponds to the critical elasticity number for the
emergence of oscillatory thermal convection.

In this section, the amplitude equations are used to exam-
ine parameter ranges for three-dimensional stationary con-
vection that have not been covered by Parmentieret al. f17g.
The stability of the steady rolls, hexagons, and squares is
determined through linear stability analysis of the steady-
state solutions of Eqs.s33d–s38d pertaining to each pattern.
The current calculations are based on the free-free boundary
conditions only, and indicate that the viscosity ratio has a
strong influence on the stable ranges of stationary roll and
hexagonal patterns. The square pattern is found to be always
unstable. The stability picture is best illustrated in thesr ,Ed
plane. Alternatively, the stability picture could be examined
in the sr ,Ded plane, where De is the Deborah number. How-
ever, additional calculationssnot included hered show that
the De varies linearly withE, and, therefore no new qualita-
tively different insight would be gained. Figure 1 shows typi-
cally the regions of existence of roll and hexagonal patterns
for a fluid with Rv=3.75 and Pr=1000. In the figure,H and
R denote stable hexagonal and roll regions, respectively. In
contrast to the prediction of Parmentieret al. f17g, there is no
region where both hexagon and roll patterns coexist, as a
result of the use of different boundary conditions here. De-
spite this discrepancy, qualitative agreement is obtained re-
garding the stable ranges of hexagonal and roll patterns. For
relatively small E, the conductive stateC is lost to two-
dimensional stationary convectionsrollsd when r exceeds
unity. When the level of elasticity exceeds a critical value
EH, but remains smaller thanEh selasticity level correspond-
ing to the onset of oscillatory convectiond, only the hexago-
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nal pattern is stable at the onset of stationary convection.
BeyondEh, oscillatory convection sets in. Thus inertia tends
to enhance the onset of convective rolls. It is found thatEH

increases linearly withr, which seems to be the case for
other values ofRv and Pr. The figure also indicates thatEH

can be larger thanEh at higher Rayleigh number, which
means that both stationary roll and oscillatory convection
become possible. This region is indicated byO/R in the
figure. ForE.Eh, the conductive state loses its stability at
r ,1 as predicted by linear stability analysis. Similarly, there
is a region marked byO/H, where both stationary hexagons
and oscillatory convection are possible.

The dependence ofEH on the fluid parameters is summa-
rized in Figs. 2 and 3, whereEH is plotted against Pr andRv
at r =1.1, respectively. Figure 2 shows the influence of Pr on
EH for RvP f0,5g. Two distinct regimes can be discerned
from Fig. 2. For small Pr values,EH drops sharply like Pr0.93

regardless of the viscosity ratio. In this range, the roll pattern

appears to be preferred unlessE is relatively large. Thus
rarefied gasessPr!1 andRv=0d would exhibit a predomi-
nantly roll pattern. For larger Pr values,EH remains essen-
tially constant. The curves become flattened, which indicates
that for typical polymeric solutionssPr@1d, the influence of
Pr on the stationary convective patterns is not significant.
Thus it is the viscosity ratio of the polymeric solution that
determines the likelihood for two- or three-dimensional con-
vection. Note thatEH tends to infinity, for any Pr, in the limit
of a Newtonian fluid sRv→`d. This can be seen more
clearly from Fig. 3, which shows the increase ofEH with Rv
for several values of Pr. The increase is slow whenRv is
relatively small. For largeRv, the figure indicates thatEH is
simply proportion toRv, and this behavior may be given by

EH < 0.07Rv − 0.022 sPr@ 1d. s39d

Thus, similarly to elasticity, viscosity tends to precipitate the
emergence of three-dimensional convection, as well as the
onset of oscillatory behavior. There is thus a synergetic in-
terplay between elastic and viscous effects regarding the loss
of stability of the roll pattern. The stable range of two-
dimensional roll pattern is significantly widened with in-
creasingRv, which is of course expected as the contribution
of the Newtonian solvent increases. Recall, that in the New-
tonian limit, only rolls are predicted, regardless of the nature
of boundary conditions usedf28g.

Unlike the critical Rayleigh number RaC
S at the onset of

stationary thermal convection, the amplitude of convection is
strongly influenced by fluid elasticity, viscosity ratio, and
Prandtl number. It is convenient to monitor the response of
the Nusselt number Nu as Ra is increased in the post-critical
range. The Nusselt number is defined in terms of the heat
flux Q at the lower plate, averaged over a cell width:

Nu = 1 −
1

Ra
ku,zsx,y,z= − 1/2,tdl = 1

−
1

Raop
o
q

Aq
pQq

ppp cosSpp

2
Dkeikqsx·ex+y·eydl, s40d

where k l denotes double integration overxP f0,2p /kg and
yP f0,2p /kg.

FIG. 1. Stability picture obtained with amplitude equation
method for two convection patterns, namely roll and hexagon. This
figure shows the stable range of roll and hexagonal patterns on
sr ,Ed plane for a fluid with Pr=1000 andRv=3.75.H andR rep-
resent stable regions for hexagonal and roll patterns, respectively,C
the stable heat conduction state, andO the oscillatory convection.
EH represents the critical elasticity number for the emergence of
three-dimensional convective patternshexagond, while Eh is the
elasticity level corresponding to the onset of oscillatory convection.

FIG. 2. Influence of Pr on the critical elasticity numberEH for
different value ofRv. The curves show thatEH decreases monotoni-
cally with Pr.

FIG. 3. Influence ofRv on the critical elasticity numberEH for
different value of Pr. The curve show the linear dependence ofEH

on Rv whenRv.0.5.
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The influence of fluid elasticity on the steady bifurcation
picture of roll pattern is depicted in Fig. 4, where Nu is
plotted againstr for EP f0,0.2g, Rv=3.75, and Pr=7.E is
chosen relatively small to insure that the exchange of stabil-
ity between conductive state and stationary roll pattern is
valid. The figure indicates that fluid elasticity tends to pro-
hibit heat transport, relatively to a Newtonian fluid. The bi-
furcation is supercritical, reflecting a gradual increase in Nu
as r exceeds slightly 1. Near the critical point, the influence
of E is gradual, with Nu decreasing almost linearly asE
increases. At higherr values, the drop in Nu between two
successiveE values is largest nearE=0. Thus elasticity ap-
pears to affect little the steady-state thermal convection for
the higher Rayleigh number range. Physically, one expects
the dependence of Nu onE to be continuous as the flow
deviates from the Newtonian limit. At higher elasticity level,
the conductive state loses its stability to stationary hexagonal
convective pattern asr exceeds 1. The steady bifurcation
picture of hexagonal pattern is also supercritical as depicted
in Fig. 5, the plot of Nu againstr for EP f0.2,0.4g, Rv

=3.75, and Pr=7. The drop in Nu between two successiveE
values becomes larger asr increasing, which indicates that
elasticity affects much the steady-state thermal convection
for the higher Rayleigh number range. ForRv=3.75, elastic-
ity tends to prohibit heat transport. However, this is not al-
ways the case. The heat transport is actually enhanced with
increasing elasticity as depicted in Fig. 6, which is the plot of
Nu againstE for RvP f2,6g, r =2, and Pr=10.

The influence of viscosity ratio on Nusselt number for
steady roll pattern is shown in Fig. 7, which parallels the
influence of elasticity asRv decreases. Recall that as the
sNewtoniand solvent viscosity decreases, the effective elas-
ticity of the fluid becomes more significant. Indeed, the fig-
ure indicates that Nu decreases with decreasingRv for a
givenr. Figures 4, 5, and 7 seem to suggest that there is little
influence of fluid elasticity or relaxation on the amplitude of
steady convection whenr is close to 1. This observation is in
agreement with the measurements of Liang and Acrivosf18g.
It is important to observe that the physical significance of the
branch curves in Figs. 4, 5, and 7 become clear only when
the stability of these branches is known. It is found that
Prandtl number has less influence on the amplitude of both

FIG. 4. Bifurcation diagrams and influence of elasticity on sta-
tionary thermal convection of roll patterns. The Nusselt number is
plotted against the reduced Rayleigh numberr for EP f0,0.2g with
Rv=3.75 and Pr=7.

FIG. 5. Bifurcation diagrams and influence of viscosity ratio on
stationary thermal convection of hexagonal patterns. The Nusselt
number is plotted against the reduced Rayleigh numberr for E
P f0.2,0.4g with Rv=3.75 and Pr=7.

FIG. 6. Influence of elasticity on stationary thermal convection
of hexagonal pattern. The Nusselt number is plotted against the
elasticity numberE for r =2 with Rv=3.75 and Pr=7.

FIG. 7. Bifurcation diagrams and influence of viscosity ratio on
stationary thermal convection of roll patterns. The Nusselt number
is plotted against the reduced Rayleigh numberr for RvP f5,`g
with E=0.1 and Pr=7.
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roll and hexagonal convective patterns. For fixed elasticity
number and viscosity ratio, the Nusselt number keeps essen-
tially the same as Pr varies from 1 to 1000, as shown in Fig.
8, which is the plot of Nu for the steady hexagonal pattern
againstr for E=0.3 andRv=3.75. The inset clearly shows an
asymptotic behavior.

VI. CONCLUSION

The finite-amplitude thermal convection for a thin layer of
a viscoelastic fluid of the Oldroyd-B type is examined in this
study. An amplitude equation approach is used to study the
stability of stationary convective patterns, namely rolls,
hexagons, and squares, in the post-critical range of the Ray-
leigh number. Six Landau type amplitude equations are de-
rived by following a generalized method proposed by Par-
mentieret al. f17g. Square patterns are found to be unstable
for any parameter range. Steady hexagonal patterns are pre-
dicted to be stable for certain range of elasticity number,
which is in contrast to the Newtonian case, where only rolls
are predicted to be stable. The influence of the Prandtl num-
ber and the viscosity ratio on the stability of rolls and hexa-
gons are examined. It is found that the viscosity ratio plays a
more important role in determining the likelihood of the two-
or three-dimensional patterns for typical polymeric solutions.
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APPENDIX A: THE LINEAR ADJOINT PROBLEM

In this appendix, the derivation of the linear adjoint prob-
lem is briefly outlined. Readers are referred to Friedmanf24g
and Eckhausf25g for the general theory. The linear adjoint
problem is defined by

kLCsfd − sMsfd,f*l = kf,LC
* sf*d − s*M*sf*dl, sA1d

where s* and the supervectorf* =su* ,p* ,u* ,t*dT represent,
respectively, the eigenvalue and eigenfunctions in the adjoint
linear problem.LC

* and M* are the adjoint operators ofLC
andM defined in Eqs.s18d and s23d. Noting that

ksMsfd,f*l = kPr−1su,u*l + ksu,u*l + kEst,t*l = ku,Pr−1s*u*l

+ ku,s*u*l + kt,Es*t*l = kf,s*M*sf*dl, sA2d

then it is readily found thatM* is given by

M* = *
Pr−1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 E
* . sA3d

Similarly, noting that

ksDud,u*l = ku,sDu*dl + k=,su* · = udl − k=,su · = u*dl

= ku,sDu*dl + kuz,uz
*lu01, sA4d

k− = p,u*l = kp, = ·u*l − kp,uz
*lu01, sA5d

kuez,u
*l = ku,u* ·ezl, sA6d

k= · t,u*l = − kt, = u*l + kez:t,u*lu01, sA7d

k= ·u,p*l = − ku, = p*l, sA8d

kRau ·ez,u
*l = ku,Rau*ezl, sA9d

kDu,u*l = ku,Du*l + UK ]u

]z
,u*LU

0

1

, sA10d

k− t,t*l = − kt,t*l, sA11d

kaġ,t*l = ku,af=t* + s=t*dTgl + kux,txz
* lu01 + kuy,tyz

* lu01,

sA12d

thenLC
* is given by

LC
* = *

D − = RaC
Sez − aG

= 0 0 0

ez· 0 D 0

0 0 0 − 1
* . sA13d

The corresponding boundary conditions are given by

u* = uz
* = txz

* = tyz
* = 0, atz= 0, 1. sA14d

APPENDIX B: EXPRESSIONS OF t0, b, c, d, AND e

The coefficients,t0, b, c, d, ande in amplitude equations
s33d–s38d are given explicitly as follows:

t0 =
C0s2,1d

C1s2,1,1d
, sB1d

FIG. 8. Bifurcation diagrams and influence of Pr on stationary
thermal convection of hexagonal patterns. The Nusselt number is
plotted against the reduced Rayleigh numberr for PrP f1,1000g
with Rv=3.75 andE=0.3. The inset shows the asymptotic behavior
of Nu against Pr.
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b = HFC2S1,1,4

2,1,42
D + C2S1,4,1

2,42,1
DG −

sr − 1dC1s1,2,1d
s1

2C0s1,2d
FC2S1,2,4

2,1,42
D + C2S1,4,2

2,42,1
DG −

sr − 1dC1s1,3,1d
s1

3C0s1,3d

3FC2S1,3,4

2,1,42
D + C2S1,4,3

2,42,1
DGJFC2S4,1,1

42,2,7
D + C2S4,1,1

42,7,2
DG

s42
4 C0s42,4d

+ HFC2S1,1,5

2,1,42
D + C2S1,5,1

2,42,1
DG −

sr − 1dC1s1,2,1d
s1

2C0s1,2d

3FC2S1,2,5

2,1,42
D + C2S1,5,2

2,42,1
DG −

sr − 1dC1s1,3,1d
s1

3C0s1,3d
FC2S1,3,5

2,1,42
D + C2S1,5,3

2,42,1
DGJFC2S5,1,1

42,2,7
D + C2S5,1,1

42,7,2
DG

s42
5 C0s42,5d

+ HFC2S1,1,6

2,1,42
D + C2S1,6,1

2,42,1
DG −

sr − 1dC1s1,2,1d
s1

2C0s1,2d
FC2S1,2,6

2,1,42
D + C2S1,6,2

2,42,1
DG −

sr − 1dC1s1,3,1d
s1

3C0s1,3d

3FC2S1,3,6

2,1,42
D + C2S1,6,3

2,42,1
DGJFC2S6,1,1

42,2,7
D + C2S6,1,1

42,7,2
DG

s42
6 C0s42,6d

+ HFC2S1,1,4

2,7,9
D + C2S1,4,1

2,9,7
DG −

sr − 1dC1s7,2,1d
s7

2C0s7,2d

3FC2S1,2,4

2,7,9
D + C2S1,4,2

2,9,7
DG −

sr − 1dC1s7,3,1d
s7

3C0s7,3d
FC2S1,3,4

2,7,9
D + C2S1,4,3

2,7,9
DGJFC2S4,1,1

9,2,1
D + C2S4,1,1

9,1,2
DG

s9
4C0s9,4d

+ HFC2S1,1,5

2,7,9
D + C2S1,5,1

2,9,7
DG −

sr − 1dC1s7,2,1d
s7

2C0s7,2d
FC2S1,2,5

2,7,9
D + C2S1,5,2

2,9,7
DG −

sr − 1dC1s7,3,1d
s7

3C0s7,3d
FC2S1,3,5

2,7,9
D

+ C2S1,5,3

2,9,7
DGJFC2S5,1,1

9,2,1
D + C2S5,1,1

9,1,2
DG

s9
5C0s9,5d

+ HFC2S1,1,6

2,7,9
D + C2S1,6,1

2,9,7
DG −

sr − 1dC1s7,2,1d
s7

2C0s7,2d

3FC2S1,2,6

2,7,9
D + C2S1,6,2

2,9,7
DG −

sr − 1dC1s7,3,1d
s7

3C0s7,3d
FC2S1,3,6

2,7,9
D + C2S1,6,3

2,9,7
DGJFC2S6,1,1

9,2,1
D + C2S6,1,1

9,1,2
DG

s9
6C0s9,6d

, sB2d

c = HFC2S1,1,4

2,8,62
D + C2S1,4,1

2,62,8
DG −

sr − 1dC1s8,2,1d
s8

2C0s8,2d
FC2S1,2,4

2,8,62
D + C2S1,4,2

2,62,8
DG −

sr − 1dC1s8,3,1d
s8

3C0s8,3d
FC2S1,3,4

2,8,62
D

+ C2S1,4,3

2,62,8
DGJC2S4,1,1

62,2,2
D

s62
4 C0s62,4d

+ HFC2S1,1,5

2,8,62
D + C2S1,5,1

2,62,8
DG −

sr − 1dC1s8,2,1d
s8

2C0s8,2d
FC2S1,2,5

2,8,62
D + C2S1,5,2

2,62,8
DG

−
sr − 1dC1s8,3,1d

s8
3C0s8,3d

FC2S1,3,5

2,8,62
D + C2S1,5,3

2,62,8
DGJC2S5,1,1

62,2,2
D

s62
5 C0s62,5d

+ HFC2S1,1,6

2,8,62
D + C2S1,6,1

2,62,8
DG

−
sr − 1dC1s8,2,1d

s8
2C0s8,2d

FC2S1,2,6

2,8,62
D + C2S1,6,2

2,62,8
DG −

sr − 1dC1s8,3,1d
s8

3C0s8,3d
FC2S1,3,6

2,8,62
D + C2S1,6,3

2,62,8
DGJC2S6,1,1

62,2,2
D

s62
6 C0s62,6d

+ HFC2S1,2,1

2,73,2
D + C2S1,1,2

2,2,73
DG −

sr − 1dC1s2,2,1d
s2

2C0s2,2d
FC2S1,2,2

2,73,2
D + C2S1,2,2

2,2,73
DG −

sr − 1dC1s2,3,1d
s2

3C0s2,3d

3FC2S1,2,3

2,73,2
D + C2S1,3,2

2,2,73
DGJFC2S2,1,1

73,2,8
D + C2S2,1,1

73,8,2
DG

s73
2 C0s73,2d

, sB3d
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d = HFC2S1,1,4

2,4,56
D + C2S1,4,1

2,56,4
DG −

sr − 1dC1s4,2,1d
s43

2 C0s4,2d
FC2S1,2,4

2,4,56
D + C2S1,4,2

2,56,4
DG −

sr − 1dC1s4,3,1d
s4

3C0s4,3d

3FC2S1,3,4

2,4,56
D + C2S1,4,3

2,56,4
DGJFC2S4,1,1

56,2,10
D + C2S4,1,1

56,10,2
DG

s56
4 C0s56,4d

+ HFC2S1,1,5

2,4,56
D + C2S1,5,1

2,56,4
DG

−
sr − 1dC1s4,2,1d

s4
2C0s34,2d

FC2S1,2,5

2,4,56
D + C2S1,5,2

2,56,4
DG −

sr − 1dC1s4,3,1d
s4

3C0s4,3d
FC2S1,3,5

2,4,56
D

+ C2S1,5,3

2,56,4
DGJFC2S5,1,1

56,2,10
D + C2S5,1,1

56,10,2
DG

s56
5 C0s56,5d

+ HFC2S1,1,6

2,4,56
D + C2S1,6,1

2,56,4
DG −

sr − 1dC1s4,2,1d
s4

2C0s4,2d

3FC2S1,2,6

2,4,56
D + C2S1,6,2

2,56,4
DG −

sr − 1dC1s4,3,1d
s4

3C0s4,3d

3FC2S1,3,6

2,4,56
D + C2S1,6,3

2,56,4
DGJFC2S6,1,1

56,2,10
D + C2S6,1,1

56,10,2
DG

s56
6 C0s56,6d

+ HFC2S1,1,4

2,10,18
D + C2S1,4,1

2,18,10
DG

−
sr − 1dC1s10,2,1d

s10
2 C0s10,2d

FC2S1,2,4

2,10,18
D + C2S1,4,2

2,18,10
DG −

sr − 1dC1s10,3,1d
s10

3 C0s10,3d
FC2S1,3,4

2,10,18
D

+ C2S1,4,3

2,18,10
DGJFC2S4,1,1

18,2,4
D + C2S4,1,1

18,4,2
DG

s18
4 C0s18,4d

+ HFC2S1,1,5

2,10,18
D + C2S1,5,1

2,18,10
DG

−
sr − 1dC1s10,2,1d

s10
2 C0s10,2d

FC2S1,2,5

2,10,18
D + C2S1,5,2

2,18,10
DG −

sr − 1dC1s10,3,1d
s10

3 C0s10,3d
FC2S1,3,5

2,10,18
D

+ C2S1,5,3

2,18,10
DGJFC2S5,1,1

18,2,4
D + C2S5,1,1

18,4,2
DG

s18
5 C0s18,5d

+ HFC2S1,1,6

2,10,18
D + C2S1,6,1

2,18,10
DG

−
sr − 1dC1s10,2,1d

s10
2 C0s10,2d

FC2S1,2,6

2,10,18
D + C2S1,6,2

2,18,10
DG −

sr − 1dC1s10,3,1d
s10

3 C0s10,3d
FC2S1,3,6

2,10,18
D

+ C2S1,6,3

2,18,10
DGJFC2S6,1,1

18,2,4
D + C2S6,1,1

18,4,2
DG

s18
6 C0s18,6d

, sB4d

e = HFC2S1,1,4

2,5,32
D + C2S1,4,1

2,32,5
DG −

sr − 1dC1s53,2,1d
s4

2C0s5,2d
FC2S1,2,4

2,5,32
D + C2S1,4,2

2,32,5
DG −

sr − 1dC1s5,3,1d
s5

3C0s5,3d

3FC2S1,3,4

2,5,32
D + C2S1,4,3

2,32,5
DGJFC2S4,1,1

32,2,11
D + C2S4,1,1

32,11,2
DG

s32
4 C0s32,4d

+ HFC2S1,1,5

2,5,32
D

+ C2S1,5,1

2,32,5
DG −

sr − 1dC1s5,2,1d
s5

2C0s5,2d
FC2S1,2,5

2,5,32
D + C2S1,5,2

2,32,5
DG −

sr − 1dC1s5,3,1d
s5

3C0s5,3d
FC2S1,3,5

2,5,32
D
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+ C2S1,5,3

2,32,5
DGJFC2S5,1,1

32,2,11
D + C2S5,1,1

32,11,2
DG

s32
5 C0s32,5d

+ HFC2S1,1,6

2,5,32
D + C2S1,6,1

2,32,5
DG −

sr − 1dC1s5,2,1d
s5

2C0s5,2d
FC2S1,2,6

2,5,32
D + C2S1,6,2

2,32,5
DG −

sr − 1dC1s5,3,1d
s5

3C0s5,3d

3FC2S1,3,6

2,5,32
D + C2S1,6,3

2,32,5
DGJFC2S6,1,1

32,2,11
D + C2S6,1,1

32,11,2
DG

s32
6 C0s32,6d

+ HFC2S1,1,4

2,11,35
D + C2S1,4,1

2,35,11
DG

−
sr − 1dC1s11,2,1d

s11
2 C0s11,2d

FC2S1,2,4

2,11,35
D + C2S1,4,2

2,35,11
DG −

sr − 1dC1s11,3,1d
s11

3 C0s11,3d
FC2S1,3,4

2,11,35
D + C2S1,4,3

2,35,11
DGJ

3

FC2S4,1,1

35,2,5
D + C2S4,1,1

35,5,2
DG

s35
4 C0s35,4d

+ HFC2S1,1,5

2,11,35
D + C2S1,5,1

2,35,11
DG −

sr − 1dC1s11,2,1d
s11

2 C0s11,2d

3FC2S1,2,5

2,11,35
D + C2S1,5,2

2,35,11
DG −

sr − 1dC1s11,3,1d
s11

3 C0s11,3d
FC2S1,3,5

2,11,35
D + C2S1,5,3

2,35,11
DGJ

3

FC2S5,1,1

35,2,5
D + C2S5,1,1

35,5,2
DG

s35
5 C0s35,5d

+ HFC2S1,1,6

2,11,35
D + C2S1,6,1

2,35,11
DG −

sr − 1dC1s11,2,1d
s11

2 C0s11,2d

3FC2S1,2,6

2,11,35
D + C2S1,6,2

2,35,11
DG −

sr − 1dC1s11,3,1d
s11

3 C0s11,3d
FC2S1,3,6

2,11,35
D + C2S1,6,3

2,35,11
DGJ

3

FC2S6,1,1

35,2,5
D + C2S6,1,1

35,5,2
DG

s35
6 C0s35,6d

. sB5d
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